The Additive Manufacturing Maturity Model

Additive Manufacturing (AM) is technology/product space with ever-increasing performance and an ever-increasing collection of products. There are many different physical principles used to add material and there are a range of part sizes that can be made ranging from micrometers to tens of meters.  And there is an ever-increasing collection of materials that can be deposited from water soluble plastics to exotic metals to specialty ceramics.

But AM tools and technologies don’t deliver value on their own.  In order to deliver value, companies must deploy AM to solve problems and implement solutions.  But where to start? What to do next? And how do you know when you’ve arrived?

To help with your AM journey, below a maturity model for AM.  There are eight categories, each with descriptions of increasing levels of maturity.  To start, baseline your company in the eight categories and then, once positioned, look to the higher levels of maturity for suggestions on how to move forward.

For a more refined calibration, a formal on-site assessment is available as well as a facilitated process to create and deploy an AM build-out plan.  For information on on-site assessment and AM deployment, send me a note at mike@shipulski.com.

Execution

  1. Specify AM machine – There a many types of AM machines. Learn to choose the right machine.
  2. Justify AM machine – Define the problem to be solved and the benefit of solving it.
  3. Budget for AM machine – Find a budget and create a line item.
  4. Pay for machine –  Choose the supplier and payment method – buy it, rent to own, credit card.
  5. Install machine – Choose location, provide necessary inputs and connectivity
  6. Create shapes/add material – Choose the right CAD system for the job, make the parts.
  7. Create support/service systems – Administer the job queue, change the consumables, maintenance.
  8. Security – Create a system for CAD files and part files to move securely throughout the organization.
  9. Standardize – Once the first machines are installed, converge on a small set of standard machines.
  10. Teach/Train – Create training material for running AM machine and creating shapes.

 

Solution

  1. Copy/Replace – Download a shape from the web and make a copy or replace a broken part.
  2. Adapt/Improve – Add a new feature or function, change color, improve performance.
  3. Create/Learn – Create something new, show your team, show your customers.
  4. Sell Products/Services – Sell high volume AM-produced products for a profit. (Stretch goal.)

 

Volume

  1. Make one part – Make one part and be done with it.
  2. Make five parts – Make a small number of parts and learn support material is a challenge.
  3. Make fifty parts – Make more than a handful of parts. Filament runs out, machines clog and jam.
  4. Make parts with a complete manufacturing system – This topic deserves a post all its own.

 

Complexity

  1. Make a single piece – Make one part.
  2. Make a multi-part assembly – Make multiple parts and fasten them together.
  3. Make a building block assembly – Make blocks that join to form an assembly larger than the build area.
  4. Consolidate – Redesign an assembly to consolidate multiple parts into fewer.
  5. Simplify – Redesign the consolidated assembly to eliminate features and simplify it.

 

Material

  1. Plastic – Low temperature plastic, multicolor plastics, high performance plastics.
  2. Metal – Low melting temperature with low conductivity, higher melting temps, higher conductivity
  3. Ceramics – common materials with standard binders, crazy materials with crazy binders.
  4. Hybrid – multiple types of plastics in a single part, multiple metals in one part, custom metal alloy.
  5. Incompatible materials – Think oil and water.

 

Scale

  1. 50 mm – Not too large and not too small. Fits the build area of medium-sized machine.
  2. 500 mm – Larger than the build area of medium-sized machine.
  3. 5 m – Requires a large machine or joining multiple parts in a building block way.
  4. 0.5 mm – Tiny parts, tiny machines, superior motion control and material control.

 

Organizational Breadth

  1. Individuals – Early adopters operate in isolation.
  2. Teams – Teams of early adopters gang together and spread the word.
  3. Functions – Functional groups band together to advance their trade.
  4. Supply Chain – Suppliers and customers work together to solve joint problems.
  5. Business Units – Whole business units spread AM throughout the body of their work.
  6. Company – Whole company adopts AM and deploys it broadly.

 

Strategic Importance

  1. Novelty – Early adopters think it’s cool and learn what AM can do.
  2. Point Solution – AM solves an important problem.
  3. Speed – AM speeds up the work.
  4. Profitability – AM improves profitability.
  5. Initiative – AM becomes an initiative and benefits are broadly multiplied.
  6. Competitive Advantage – AM generates growth and delivers on Vital Business Objectives (VBOs).

Image credit – Cheryl

Comments are closed.

Mike Shipulski Mike Shipulski
Subscribe via Email

Enter your email address:

Delivered by FeedBurner

Archives